Learn How

Learn how AI can help to enhance care documentation, improve HCC capture rates, and accurately reflect the profiles of complex patients. Discover how AI can help to identify patients with undocumented-yet-suspected HCCs, surface actionable opportunities to clinical teams, estimate economic impacts, and use previous HCC documentation decisions to automatically improve.

Automatically ingest data from dozens of health data sources including...

Unstructured Clinical Notes

Data extracted from EHR clinical notes for conditions being diagnosed, monitored, or treated about important clinical concepts related to symptoms, test results, diagnoses and treatments.

e-Prescribing Data

Data from electronic prescriptions detailing key information about medications, dosage, patient instructions for frequency and timing, and available refills.

Medical Claims

Data extracted from health insurance medical claims with details about dates and place of service, diagnosis codes, key procedures, use of medical equipment, and provider specialties.

Closedloop icon with a line

ClosedLoop generates explainable predictions using

thousands of auto-generated, clinically relevant contributing factors

Jeff Lee
71-Year-Old Male
Likely undocumented condition for CHF
Risk Score Percentile
Impact on Risk  |  Contributing Factor
+29% | Decline in LV Ejection Fraction
.45 to .35
+14% | Dyspnea on Exertion
June 14, 2020
+10% | Procedure for Electrocardiogram
June 14, 2020
+10% | e-Rx for Beta Blockers
June 14, 2020

What Are HCCs?

Risk adjustment is quietly becoming an economic cornerstone in healthcare. It determines payments to Medicare Advantage plans—accounting for more than 24 million Medicare beneficiaries—and is increasingly implemented in value-based contracts.¹ At risk adjustment’s core is the Hierarchical Condition Category (HCC) model, which is based on diagnosis codes captured during clinical encounters. Because HCCs determine payments, they influence an organization’s economic viability, available resources, and care delivery capacity, which means accurate and complete diagnosis coding is becoming an economic and clinical imperative.

Why It Matters

Despite this growing importance, the diagnostic codes that are foundational to the HCC model can be inaccurate or incomplete, particularly for new patients. Inaccurate and incomplete coding not only reduces payments for healthcare organizations, it impacts the resources available for addressing the full spectrum of patient needs, especially for complex patients.

AI Presents an Opportunity

ClosedLoop’s Suspect HCC models identify patients with undocumented-yet-suspected HCCs and surface the contributing factors that best explain why each HCC is suspected. This insight enables organizations to accurately and completely reflect their complex patient profiles, identify and prioritize actionable opportunities for clinical teams, and produce expected RAF scores and economic impact. Moreover, ClosedLoop’s models assess documentation determinations to automatically improve overall accuracy, continuously refining diagnosis identification while minimizing “false positive” suspects. This allows organizations to remain agile and adapt as CMS continues to modify their risk adjustment processes and reimbursement models.

Did You Know...

  • Only 45% of chronic disease is reconfirmed in Medicare year-over-year²
  • 55% of HCOs reported accurately coding based on patient data as their biggest challenge²
  • #1 HCO Need was an easy way to prioritize patients with missing diagnosis codes²
Citations & Footnotes

1. Freed, Meredith, et al. “A Dozen Facts about Medicare Advantage in 2020.” Kaiser Family Foundation, 13 Jan. 2021, www.kff.org/medicare/issue-brief/a-dozen-facts-about-medicare-advantage-in-2020/#:~:text=1.,doubled%20over%20the%20past%20decade&text=In%202020%2C%20nearly%20four%20in,time%20since%20the%20early%202000s. Accessed 11 Mar. 2021.

2. Smith D. “Case Study: Hierarchical condition categories - Get documentation and coding right - 3M Inside Angle.” 3M Inside Angle. Published 2017. Accessed March 25, 2021. https://www.3mhisinsideangle.com/klab-post/case-study-hierarchical-condition-categories-get-documentation-coding-right/

ClosedLoop.ai is an exciting and important partner in our strategy to develop timely predictive insights through operationalized AI solutions that will drive member engagement and better health outcomes.

Pat Wang
President & CEO, Healthfirst
Klas image

ClosedLoop.ai’s healthcare expertise was a big deal to us. It didn’t take a lot to translate things, and they adapted their approach to create a predictive model for our unique interest in the data streams.

Anonymous Customer CEO
KLAS Analyst Report

We are extremely impressed with the predictive modeling capabilities the ClosedLoop platform has delivered. The ClosedLoop team has exceeded all defined goals and benchmarks set to date and we anticipate a substantial return on our investment as these predictions are operationally deployed.

Cheryl Lulias
President & Executive Director, MHN
Klas image

We wanted to use the product for population health and SDOH. The things we can do with the ClosedLoop.ai product are unlimited.

Anonymous Customer
KLAS Analyst Report

Over the course of my career, there has never been an opportunity like this. The need for efficiency is a daunting challenge. The capacity of predictive AI technology drives our efficiency and will have a lasting impact on our ability to help PCPs improve the quality of health outcomes while reducing health disparities.

Dr. Jim Walton
President & CEO, Genesis Physicians Group

Learn What ClosedLoop Can Do for Your Organization

The industry’s best collection of customizable predictive models for common healthcare use cases.

Talk To An Expert